基礎工程數學(第五版)
<內容簡介> 工程數學對於大專工程科系的學生來講是極重要的課程,本書以精簡的文字來說明,避免普遍工程數學用書之艱澀解說,內容包含常微分方程式、拉氏轉換、富利葉分析、向量分析、矩陣、複變數分析等等,涵蓋工程數學最基礎、最重要的部份,協助讀者在短期內對工程數學有一初步了解,且能立即應用於專業課程上。 ★目錄: 第1章 一階常微分方程式 1-1 微分方程式簡介 1-2 分離變數法 1-3 正合方程式 1-4 齊次方程式 1-5 視察法 1-6 積分因子 1-7 一階線性微分方程式與Bernoulli方程式 第2章 線性微分方程式 2-1 線性微分方程式 2-2 D算子之進一步性質 2-3 高階常係數齊次線性微分方程式 2-4 比較係數法 2-5 參數變動法 2-6 尤拉線性方程式 2-7 線性微分方程組(一) 2-8 冪級數法 2-9 可降階微分方程式 2-10 正合方程式 第3章 拉氏轉換 3-1 特殊函數 3-2 拉氏轉換之定義 3-3 拉氏轉換之性質 3-4 反拉氏轉換 3-5 拉氏轉換在微分方程式與積分方程式求解之應用 第4章 富利葉級數 4-1 預備知識 4-2 富利葉級數 第5章 矩 陣 5-1 線性聯立方程組 5-2 矩陣之基本運算 5-3 行列式 5-4 方陣特徵值之意義 5-5 線性聯立方程組(二) 第6章 向量分析 6-1 向量之基本概念 6-2 向量點積與叉積 6-3 向量函數之微分與積分 6-4 梯度、旋度與方向導數 6-5 線積分 6-6 平面上的格林定理與散度定理 第7章 複變數分析 7-1 複數系 7-2 複變數函數 7-3 基本解析函數 7-4 複變函數積分 7-5 Cauchy積分公式 7-6 羅倫展開式 7-7 留數定理 7-8 留數定理在定積分求值上之應用 回TOP↑